
A feasibility study on Ring 0 access and ROP inside
virtual machines - type II (hosted)

Krishna Nandula, Bezwada Bruhadeshwar
 International Institute of Information Technology.

Hyderabad, Gachibowli.
krishna.n@students.iiit.ac.in

bezawada@mail.iiit.ac.in

Abstract—

Most of the today’s x86 computer hardware was designed to run
a single operating system and few applications running on it.
Around 60% of the resources are underutilized and the
enterprises started looking at various optimizations for effective
resource utilization. Virtualization is one such technique which
was started in the early 60’s with sharing of hardware resources
among mainframe servers and slowly moved towards x86
architectures.

When we are talking about sharing of resources, it is important
to understand various security aspects of virtualization namely
memory and process virtualization. This paper targets to
perform a feasibility study to understand few of those aspects of
type II virtual machine. The study includes understanding and
testing trap & emulates functionality of process virtualization
using call gate programming and also effects on return-oriented
programming on VMs. At the end we will provide some
experimental results while performing random tests on virtual
machines.

Keywords— Return Oriented Programming, Call Gate
Programming, Memory Virtualization, Process virtualization,
virtual machine, hypervisor.

I. INTRODUCTION
Motivation: One of the major properties of virtualization [1]
is isolation [1]. Any applications which are running inside a
guest operating system should not affect the host and any
other guests on same machine.

The need to study various security aspects on memory
virtualization [2, 8] and process virtualization [2, 8] is
growing increasingly as the number of vulnerabilities reported
by common vulnerabilities and exposure [3] is rapidly
growing.

The main technical contributions of this paper are (1) a study
of basic page tables and call gates and setting up the
terminology (2) Setting up the base, a way to access Ring 0
inside virtual machine using callgates (3) Setting up the user
base, using return oriented programming techniques to by
DEP [7] and call Ring 0 function (4) Results on various
experimental studies related to performance for various virtual
machines.

The rest of the paper is organized as follows. In section 2 a
brief review on Call tables mainly GDT [4], WinDDK [5], and
OSLoader [6]. In section 3 we look into a simple call gate
program and how call gates can be used to running
instructions which require higher privileges inside virtual
machines. In section 4 we try to overflow a simple program
and also use return-oriented programming techniques to
bypass the DEP [7] inside virtual machines. In section 5, we
would like to present few experimental results obtained during
the study.

II. SECTION 2 , BASIC TERMINOLOGY

A virtual machine is a software implementation of a real

machine. A type 2 virtualization is treated as hosted VM,
where virtual machine monitor or hypervisor runs beside host
operating system. The operating system inside virtual machine
is treated as Guest operating system. The complete Guest
operating system will be running in user mode i.e., at Ring 3
and any instructions which requires higher privileges will be
trapped inside a virtual machine monitor and emulated further.

In order to test this emulation it is important to understand
about call tables, call gate descriptors, kernel space. Call
tables are used in both user space and kernel space to store the
address of routines. If we can replace the call table entry we
can reroute the program execution to the function of our
choice or execute an arbitrary function with kernel privileges.
The call table available in the user space is IAT and at kernel
space we have IDT, GDT etc., we are focused on Global
descriptor table in this paper.

Global Descriptor Table [4] is a data structure which
defines the bases access privileges for certain areas of
memory.

Call gate is a special GDT [4] descriptor called system
descriptor. These call gates helps to execute Ring0 code from
Ring 3. (Less privileged code calling higher privileges).
 WinDDK [5] is a windows driver development kit used for
building kernel device drivers on Windows operating system.

In the next section we will use these mechanisms and try to
execute an arbitrary code at Ring 0 and study the behaviour of
virtual machine.

III. SECTION 3(PART I) , RUNNING CODE AT RING 0

Virtual machine monitor will take care of the instructions

which require high privileges by trap and emulate method. In
a normal user mode program, if there is any such instruction
VMM automatically emulates. But we need to run our own
arbitrary function at Ring 0 to get more control on kernel
space.

Caution note: As we are detailing with kernel data structure,
there are high chances that any mistake will cause the virtual
machine to freeze or the operating system showing blue
screen errors.

Below are the basic steps involved in creating any kernel

mode drivers.
1. Use windows driver development kit.
2. Write your driver.
3. Test your driver with OSLoader.

As the driver completely executes at Ring 0, we can access the
Global Descriptor table add, find if there is any empty entry in
the table if there is one add our call gate to GDT . The call
gate will have the address of our function routine which needs
to be executed at Ring 0.

Once the call gate is deployed into the GDT, we need to write
a user mode program which will call the function associated to
our call gate routine.

Let’s briefly discuss the steps involved in build this model.

Step 1: Setting up our device driver

Many excellent articles are available which helps us to under
how to write our own custom device driver. Windows Driver
Development Kit [5] has many samples.

Basic skeleton of our device driver program.

Step 2: Our arbitrary function

In the figure below we provide a snap shot of the function
which will be executed when the call gate is called.

Step 3: Setting up our client program which runs at Ring 3 and
invokes our call gate procedure.

This can be achieved by writing __asm code and using a far
call.

Far call is a call to a function which is located in a different
segment than the current code segment. Similar to inter
segment call.

Basic skeleton of our user mode program and its interaction.

We have successfully gained control on Ring 0, to execute
some arbitrary function. The below screen shot show a user
programme executed a call gate which in turn runs our Ring 0
arbitrary function.

The function can run malicious code fragments by
intercepting system calls and also my acting as a mediator
between guest kernel and virtual machine monitor. The user
program can be further converted to a shell code and by using
the return-oriented programming techniques discussed in next
section we can execute the shell code by exploiting vulnerable
code.

IV. SECTION 4(PART II) , RETURN-ORIENTED PROGRAMMING
Return oriented programming is a programming technique

to bypass the DEP protection provided by windows operating
system.

DEP (Data execution and prevention) [7] marks memory

pages as nonexecutables, which will not allow the shell code
in the stack, heap, or any other memory pools to execute the
code.

We use the concept of return oriented programming and try

to bypass the DEP protections, by overflowing a vulnerable
application and injecting the shell code. The shell code here
will be the user mode program written in section III.

Basic steps involved

Bypassing DEP
Converted Binary to Shell Code
Overflow and Shell code execution.

Step 1: Bypass Data Execution and Prevention:

We make a windows function call to VirtualProtect (), which
will change the access protection level of a given memory
page. This allows us to mark the area of our shell code to
make it executable and run the shell code.

The method VirtualProtect () is present inside kernel32.dll

Sample vulnerable code: (musicplayer.c)

int main(int argc, char *argv[])
{
 char buffer[100];
 if(argc>=2)
 strcpy(buffer, argv[1]);
 return 0;
}

If DEP is enabled on the machine and the injected shell code
after we overflow the above vulnerable program will not be
executed.

We design our payload and make sure that EIP points exactly
to the base address of virtualprotect() method. As a test we

debug the code inside immunity debugger and place a break
point near virtualprotect () method and overflow the code.

The breakpoint hits in the immunity debugger and manually
we try to edit the four parameters required for virtual protect ()
method to enable the memory area for our shellcode as write
executable.

Four parameters of virtualProtect ()

- RET address of virtualproect – This parameter will
set the return address of virtualproect() method i.e.,
the code jumps to our respective address after
completing the call.

- Address – This parameter requires the starting
address location of the shellcode, as we need our
shell code to move from nonexecutable to executable.

- Size – This parameter takes the size of our shell code.
 “BC 02 00 00”

- New Protect – This is a flag when we set this flag to
specify that the memory location needs to be
execuable. In our sample we use the value “40 00 00
00”

Once we continue the execution flow, the shell code will be
executed by bypassing the DEP protection. This shell code
will invoke our call GATE entry in GDT which executes a
malicious function in Ring 0. The figure below shows the
location of Shell code in the memory.

V. SECTION 5 , COMBINING ROP + RING 0

In section 3, we have discussed briefly on how call gates

entry inside GDT will help us to invoke an arbitrary function
inside Ring 0. In section 4, using return-oriented technique to
bypass data execution prevention mechanisms. We can
formulate a complete attack model by combining both of these

techniques making it possible to overflow a user level
application and executing a shell code which internally makes
calls to an arbitrary function in Ring 0.

VI. SECTION 5 , RANDOM EXPERIMENTAL STUDIES

We have performed couple of random experiments to study

the behaviour of virtual machines.

Study 1: What if the function inside Ring 0 is calling the same
function; user program invokes Ring 0 functions and the
function invokes itself again. Using far call.

Result: Blue Screen Error, the operating systems crashes and
restarts itself.

Study 2: Fork Bomb (virtual box)
Configuration plays a keys role while deploy a virtual
machine. If a virtual machine is ill configured it can impact
the performance of host operating. We studied this with a
simple fork bomb [] program under Linux inside Virtual Box.

Command executed : () { :| :& }; :

Result: As the virtual machine is ill configured the fork bomb
completely uses the memory allocated and also affects the
host operating system performance. Finally crashing the
virtual box.

Stud 3: memtest86+ (virtual box)
As a random test on memory we initiated the memory test
feature available in backtrack and found that the virtual box
crashes during the memory test.

Results: Virtual Box crashed during the memory test.

The above tests randomly crashed the virtual machines. The
work is in progress to analyse the reasons behind these crashes.

VII. FUTURE WORK
Using these mechanisms as a base, we further continue our
research to study various virtual machine kernel/micro kernel
data structures. A deep dive into I/O virtualization to
understand possible security risks inside virtual machines.

VIII. CONCLUSIONS
Virtual machines runs both guest os and its application in

user mode , we have provided a combination of Running code
in Ring 0 using call gate + Return Oriented Programming
techniques to bypass DEP protection and invoke a function at
Ring 0. We have successfully showed a way that even a
virtual machine runs the guest OS in unprivileged mode. We
can execute our own function routine to run at Ring 0.

We further continue to study various different areas of
virtual machine using Ring 0 function.

REFERENCES

[1] Jiang Wang, Sameer Niphadkar, Angelos Stavrou, and Anup K.

Ghosh “Virtualization Architecture for In-depth Kernel Isolation”
[2] Ken Barr, Ravi Soundararajan, Carl Wald Spurger (VMware)

“Introduction to Virtual Machines”
[3] Common Vulnerability & Exposure, 535 “http://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=vmware”
[4] Global Descriptor Table or GDT data structure

“http://en.wikipedia.org/wiki/Global_Descriptor_Table”
[5] Windows Driver Kit by Microsoft for device driver programming
 http://msdn.microsoft.com/en-us/library/windows/hardware/gg487428.aspx
[6] OSLoader, the software used to test our written kernel programs.
[7] A detailed description on Data Execution & Prevention

“http://support.microsoft.com/kb/875352”
[8] Chen, P. M. and Noble, B. D. 2001. When Virtual Is Better Than

Real. In Proceedings of the Eighth Workshop on Hot Topics in Operating
Systems (May 20 - 22, 2001). HOTOS. IEEE Computer Society,
Washington, DC, 133.

 [9] R. Hund, T. Holz, and F. Freiling. Return-Oriented Rootkits:
Bypasssing Kernel Code Integrity Protection Mechanisms.
In Proc. of the 18th USENIX Security Symposium, 2009

 [10] Adams, K. and Agesen, O. 2006. A comparison of software and
Hardware techniques for x86 virtualization. SIGARCH Comput.
Archit. News 34, 5 (Oct. 2006), 2-13.

[11] Sina Bahram, Xuxian Jian, Zhi wang, Mike Grace, Jinku Li,Deepa
Srinivasan “DKSM : Subverting virtual machine introspection for
Fun and Profit”

[12] X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detection
through VMM-based”Out-of-the-Box” Semantic View
Reconstruction. In Proc. of the 14th ACM CCS, 2007.

[13] Travis Ormandy “An Empirical Study into the Security Exposure
to Hosts of Hostile Virtualized Environments”

[14] Joanna Rutkowska, “Red Pill” , http://invisiblethings.org
[15] Peter Ferrie “Attacks on Virtual Machine Emulators” , Symantec

Advanced Threat Research
[16] Keith Adams, Ole Agesen “A Comparison of software and

hardware techniques for x86 Virtualization” vmware.
[17] Dirk Leinenback “Communicating Virtual Machines” . Saarland

University. Germany.
[18] Steven Hand,Andrew Warfield,Keir Fraser,Evangelos Kotsovinos,

Dan Magenheimer “Are Virtual Machine Monitors Microkernels
Done Right ?”

[19] Stephen Checkoway, Hovav Shacham “Escape from return-
oriented programming”

[20] Ryan Riley, Xuxian Jian, Dongan Xu “Guest-Transperant
Prevention of Kernel Rootkits with VMM-based memory
shadowing”

[21] Sherri Sparks, “Shadow Walker – Raising the bar for Rootkit
Detection”

[22] Joanna Rutkowska “Introducing Blue Pill”
http://theinvisiblethings.blogspot.in/2006/06/introducing-blue-
pill.html

[23] Neil MacDonald “Hypervisor attacks in the Real World”
[24] G.Carrette, crashme tool for testing the robustness of the operating

system. http://people.delphiforums.com/gjc/crashme.html
[25] Virtual box http://www.virtualbox.org an open source QEMU

based virtual machine and vmware http://www.vmware.com .
[26] Tom Liston, presentation on “Thwarting Virtual Machine

Detection”
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Sk
oudis.pdf

http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=vmware
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=vmware
http://en.wikipedia.org/wiki/Global_Descriptor_Table
http://support.microsoft.com/kb/875352
http://taviso.decsystem.org/virtsec.pdf
http://taviso.decsystem.org/virtsec.pdf
http://theinvisiblethings.blogspot.in/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.in/2006/06/introducing-blue-pill.html
http://people.delphiforums.com/gjc/crashme.html
http://www.virtualbox.org/
http://www.vmware.com/
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf

